Critical state of a thin-walled beam under combined load
نویسندگان
چکیده
منابع مشابه
Physical Nonlinear Analysis of a Beam Under Moving Harmonic Load
A prismatic beam made of a behaviorally nonlinear material is analyzed under aharmonic load moving with a known velocity. The vibration equation of motion is derived usingHamilton principle and Euler-Lagrange Equation. The amplitude of vibration, circular frequency,bending moment, stress and deflection of the beam can be calculated by the presented solution.Considering the response of the beam,...
متن کاملUltimate Load Capacity and Behavior of Thin-Walled Curved-Steel Square Struts, Subjected to Compressive Load
There have been some experimental tests on hollow curved-steel struts with thin-walled square sections, in order to investigate their general behavior, particularly their capacity for bearing differing loads. One set of square tubes are cold-formed into segments of circular arcs with curvature radii, equal to 4000 mm. Different lengths of curved struts are fabricated so as to cover a practical ...
متن کاملNumerical Simulations of Post-Critical Behaviour of Thin-Walled Load-Bearing Structures Applied in Aviation
متن کامل
Nonlinear Plate Theory for Postbuckling Behaviour of Thin-Walled Structures Under Static and Dynamic Load
متن کامل
Postbuckling Equilibrium Path of a Long Thin-Walled Cylindrical Shell (Single-Walled Carbon Nanotube) under Axial Compression Using Energy Method
In this paper, an elastic shell model is presented for postbuckling prediction of a long thinwalledcylindrical shell under axial compression. The Ritz method is applied to solve the governingequilibrium equation of a cylindrical shell model based on the von-Karman type nonlinear differentialequations. The postbuckling equilibrium path is obtained using the energy method for a long thin-walledcy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2009
ISSN: 0307-904X
DOI: 10.1016/j.apm.2008.10.014